

Programmer's Guide For DVX8044 \& DVX8032

A1: Introduction

If you need to use your own Software Control program from a PC or WORKSTATION with an RS-232 or LAN port, the device allows communication through an ASCII code protocol.

The device treats any character that it receives on the RS-232 or LAN as a possible command but only accepts legal commands.
There is no starting/ending code needed in a command string.
A command can be a single character typed on a keyboard and does not require any special character before or after it.
(It is not necessary to press "ENTER" on the keyboard). A command can be preceded by a value (See chapter A-2).
When the device receives a valid command, it will execute the command. Then it will send back the status of the parameters that have changed due to this command.

If the command cannot be executed (value out of range, no signal on the selected input), etc. The device will just sends back the current status of the corresponding parameters.

If the command is invalid, an error response will be returned to the control device. All responses returned to the control device end with a carriage return $<\mathrm{CR}>$ and a line feed <LF> signaling the end of the response character string (see chapter A-3).

A2: Commands structure

Commands are usually composed of numerical values followed by the command characters. The characters used without any numerical value return the current setting of the command. [read command]

The indexes are defined number: the layer number, the input number, the preset ... on which the command apply. They are separated with a comma. There is commands without index and others with up to 3 indexes.

Write command = [[index,] ...] + Value + Character (s) code
A read command is constituted by index followed by a command coded in 1 or 2 alpha numeric characters, same structure as write command without the value.
Read command $=[[$ index, $] ..]+$. Value + Character (s) code

A3: Examples

Document notation:

1) Command without index: SWITCHER_MODE

Command to set the switcher mode to mixer mode: OCM
Answer: $\mathrm{CM} 0<\mathrm{CR}><L F>$ which mean that the device is now working in mixer mode.
2) Command with 1 index: OFORMAT

Command to set the Main output format to XGA: $0,120 \mathrm{~F}$
Answer: OF0,12<CR><LF> which mean that the output format is now 1024×768
3) Command with 2 indexes: PE_INPUTNUM

Command to set the input 4 displayed in Layer A of Next Preset: 1,1,4IN
Answer: IN $1,1,4<C R><L F>$ which mean that the layer A of the next preset will display the input 4 signal
4) Read command without index : TAKEAVA

Read command to know if the TAKE command is available: TA
Answer: TA1<CR><LF> which mean that the device is ready to accept the TAKE command.
5) Read command with 2 indexes : SET_ASPECT_RATIO_OUT

Read command to know how is displayed a DVI signal plugged on the input 4: 3,1,sB
Answer: $s B 3,1,2<C R><L F>$ which mean that the DVI plug on input 4 is displayed full screen

A4: Error codes

Answer: $\mathrm{E} 10<\mathrm{CR}><L F>$ which mean invalid command
Answer: E11<CR><LF> which mean index value error (index value out of range)
Answer: E12<CR><LF> which mean index number error (too or few indexes)

Some commands are only available as [Read command], they are status and are colored in blue as this line. Some commands are colored in yellow as this line to indicate they were added or modified in this version. A5 COMMUNICATION PORTS

- REMOTE RS-232 (on DB 9 female connector)

Level: RS-232.
Data Rate: 9600 Bauds, 8 data bits, 1 stop bit, no parity bit, no flow control.

- TALLY OUT (on DB 9 female connector)

Rating: $\quad 20$ Vdc MAX, 50 mA MAX (open collector).

- LAN (on RJ45 connector)

Protocol: UDP (User Datagram Protocol) or TCP (Transmission Control Protocol).
Data Rate: 10 / 100 Mbps .
LED functions (on RJ45 connector):

Top LED	Bottom LED	Meaning
OFF	OFF	No link
OFF	ON	100 BASE-T link.
ON	OFF	10 BASE-T link.

Programmer's Guide

	SWITCHER_MODE	CM	CM	Device mode	Rd/Wr	0	3	0	$\begin{aligned} & 0=\text { Mixer mode } \\ & 1=\text { Matrix mode } \\ & 2=\text { Embedded softedge mode } \\ & 3=\text { Synchronous Matrix mode } \end{aligned}$			
	AUTO_LOCK	YL	YL	auto-lock (prevent from no-signal selection)	Rd/Wr	0	1	1	1 = disable selection of inputs without signal			
	AUTO_TAKE	YT	YT	auto-take	$\mathrm{Rd} / \mathrm{Wr}$	0	1	0	1 = automatic TAKE enable			
	AUTO_STEPBACK	YA	YA	preset toggle	Rd/Wr	0	1	0	1 = exchange Current and Next presets on TAKE operation			
	AUTO_SET	YX	YX	inputs auto-setting	$\mathrm{Rd} / \mathrm{Wr}$	0	1	0	(auto clear)			
	BUTTON_1_1_MODE	YM	YM	front panel key 1:1 mode	Rd/Wr	0	1	1	$0=1 _1$ key in no zoom mode $1=1 _1$ key in centered mode			
	NATIVE_ZOOM_REQUEST	YY	YY	current layer 1:1 scaling request	Rd/Wr	0	1	0	(auto clear)			
	HDCP_CONFLICT	HC	HC	HDCP conflict	Rd	0	1	0	1 = input HDCP content and at least one output not HDCP			
	BOOT_ERROR_STATUS	BE	BE	boot error notification (bit field)	Rd	0	65535	0	bit field, one bit per card			
	VERI1	xi	xi	machine ID byte 0 \& byte 1	Rd	0	65535	0	ex : AAAA			
	VERI2	xj	xj	machine ID byte 2 \& byte 3	Rd	0	65535	0	ex : AAAA			
	VERI3	xk	xk	machine ID byte 4 \& byte 5	Rd	0	65535	0	ex : AAAA			
	VERI4	xI	xI	machine ID byte 6 \& byte 7	Rd	0	65535	0	ex : AAAA			
Version	VERK	xK	xK	programmable components checksum \& version	Rd	0	65535	0		$\begin{aligned} & 0=\text { Micro } \\ & 1=\ln 1 \\ & 2=\ln 2 \\ & 3=\text { Out } \\ & 4=\text { Scaler } \\ & 5=\text { Video } \end{aligned}$	$\begin{aligned} & 0=\text { components } \\ & \text { number } \\ & 1= \\ & \text { microcontroler } \\ & 2=1 \text { st } \\ & \text { FPGA/CPLD } \\ & 3=2 \text { nd } \\ & \text { FPGA/CPLD } \\ & 4=3 \text { rd } \\ & \text { FPGA/CPLD } \\ & 5=4 \text { th } \\ & \text { FPGA/CPLD } \\ & 6=5 \text { th } \\ & \text { FPGA/CPLD } \\ & 7=6 \text { th } \\ & \text { FPGA/CPLD } \\ & \hline \end{aligned}$	

	VERV	xV	xV	this commands set version	Rd	0	65535	15		$\begin{aligned} & 0=\text { Micro } \\ & 1=\ln 1 \\ & 2=\ln 2 \\ & 3=\text { Out } \\ & 4=\text { Scaler } \\ & 5=\text { Video } \end{aligned}$		
	VERUPD	xU	xU	upgrade version (bit fields)	Rd	0	65535	0	bit $15=1$ for BETA version, bits 14 down to 0 for hexa coded version number ex: v4.00 $=0 \times 400=1024$			
	OPT	yo	yo	validated \& detected options	Rd	0	65535	0	bit $0=$ LAN installed bit $1=$ Video option installed bit 2 = audio option installed	$\begin{aligned} & 0=\text { Micro } \\ & 1=\ln 1 \\ & 2=\ln 2 \\ & 3=\text { Out } \\ & 4=\text { Scaler } \\ & 5=\text { Video } \end{aligned}$		
	REV	xR	xR	cards revisions	Rd	0	255	0		$\begin{aligned} & 0=\text { Micro } \\ & 1=\ln 1 \\ & 2=\ln 2 \\ & 3=\text { Out } \\ & 4=\text { Scaler } \\ & 5=\text { Video } \end{aligned}$		
Inputs	IN_NOT_EXTENDED	ix	ix	multihead with covering input source	$\mathrm{Rd} / \mathrm{Wr}$	0	1	0	$0=$ monohead source splitted on each machine 1 = multihead source with covering management	$\begin{aligned} & 0=\operatorname{lnput1} \\ & 1=\text { Input2 } \\ & 2=\operatorname{Input3} 3 \\ & 3=\operatorname{Input4} 4 \\ & 4=\text { Input5 } \\ & 5=\operatorname{Input} 6 \\ & 6=\operatorname{Input7} \\ & 7=\text { Input } \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	IN_TYPE	iK	iK	input signal type	Rd/Wr	0	17	13	$0=$ composite SDTV 1 = Y/C SDTV $2=$ RGBS TTL/Analog SDTV/EDTV/HDTV 3 = RGB SOG SDTV/EDTV/HDTV 4 = YUV SDTV/EDTV/HDTV 5 = SOG Computer $6=\mathrm{H} \& \mathrm{~V}$ or Composite (TTL/Analog) Computer $7=B \& W$ Computer 8 = RGB 16-235 DVI-D EDTV/HDTV 9 = YUV DVI-D EDTV/HDTV $10=$ RGB 0-255 DVI-D Computer 11 = RGB 16-235 DVI-D Computer 12 = SDI SDTV/HDTV $13=$ analog Computer, separate H\&V sync $14=$ analog Computer, TTL composite sync 15 = analog Computer, analog composite sync $16=$ analog video RGB, TTL composite sync 17 = analog video RGB, analog composite sync	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input } \\ & 5=\text { nput } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	IN_SYNC_LOAD	il	il	75 ohms analog H sync load	Rd/Wr	0	1	0	$\begin{aligned} & 0=\text { High } \mathrm{Z} \\ & 1=75 \text { ohms load } \end{aligned}$	$0=$ Input 1 $1=$ Input2 $2=$ Input3 $3=$ Input 4 $4=$ Input5 $5=$ Input 6 $6=$ Input 7 $7=$ Input 8	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	IN_USED	iu	iu	used input	$\mathrm{Rd} / \mathrm{Wr}$	0	1	1	$0=$ unused input	$0=$ Input 1 $1=$ Input 2 $2=$ Input $3=\ln p u t 4$ $4=$ Input 5 $5=$ Input 6 $6=$ nnput 7 $7=\ln p u t 8$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	IN_SD_STD	iS	iS	input video standard	Rd/Wr	0	7	0	$\begin{aligned} & 0=\text { Auto } \\ & 1=\text { NNSC }(M, J) \\ & 2=\text { PAL (BDGHIN) } \\ & 3=\text { PAL (M) } \\ & 4=\text { PAL (M-Combination) } \\ & 5=\text { NTSC } 4.43 \\ & 6=\text { SECAM } \\ & 7=\text { PAL } 60 \end{aligned}$	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\operatorname{lnput3} 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	IN_CROPPING	iC	iC	activate input finder for cropping	Rd/Wr	0	1	0		$\begin{aligned} & 0=\text { Input1 } \\ & 1=\text { Input } 2 \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input5 } \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	IN_HDCP_ENABLE	iH	iH	enable DVI-D input HDCP answer	Rd/Wr	0	1	1		$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \end{aligned}$		
	IN_CROP_MODE	im	im	input finder selection	Rd/Wr	0	1	1	$0=$ direct input cropping $1=$ frame displayed to select cropping zone			
	IN_REMAPPING	iR	iR	input processing pending	Rd	0	1	0		$0=$ No Input 1 = Input $1 /$ Frame 1 / Logo1/ MaskFrame1 2 = Input2 / Frame2 / Logo2 3 = Input 3 / Frame3 / Logo3 4 = Input 4 / Frame 4 / Logo4 5 = Input5 / Frame5 / Logo5 6 = Input6 / Frame6 / Logo6 7 = Input $/$ / Frame7 / Logo7 8 = Input8 / Frame8 / Logo8		

EDID	EDID_FORMAT	EF	EF	EDID preferred format	Rd/Wr	0	20	20	$\begin{aligned} & 0=640 \times 480 \mathrm{VGA} \\ & 1=8006000 \text { SVGA } \\ & 2=1024 \times 768 \mathrm{XGA} \\ & 3=1280 \times 960 \\ & 4=12080 \times 1024 \mathrm{SXGA} \\ & 5=1364 \times 1024 \mathrm{4} / 3 \mathrm{DILA} \\ & 6=1400 \times 1050 \mathrm{SXGA}+ \\ & 7=1600 \times 1200 \mathrm{UXGA} \\ & 8=852 \times 480 \mathrm{WVGA} \\ & 9=720 \mathrm{ORGB} \\ & 10=1280 \times 768 \mathrm{WXGA} \\ & 11=1360 \times 768 \mathrm{SWXGA} \\ & 12=1366 \times 800 \mathrm{SWXGA}+ \\ & 13=1200 \times 800 \mathrm{RGB} \\ & 14=1680 \times 1050 \mathrm{WSXGA}+ \\ & 15= \end{aligned}$	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\operatorname{Input3} 3 \\ & 3=\operatorname{Input} 4 \\ & 4=\text { Input } 5 \\ & 5=\operatorname{Input} 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	EDID_RATE	ER	ER	EDID preferred frame frequency	Rd/Wr	6	10	8	$\begin{aligned} & 0=\text { Custom Field Rate } \\ & 1=23,97 \mathrm{~Hz} \\ & 2=24 \mathrm{~Hz} \\ & 3=25 \mathrm{~Hz} \\ & 4=29,97 \mathrm{~Hz} \\ & 5=30 \mathrm{~Hz} \\ & 6=50 \mathrm{~Hz} \\ & 7=59,94 \mathrm{~Hz} \\ & 8=60 \mathrm{~Hz} \\ & 9=72 \mathrm{~Hz} \\ & 10=75 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\operatorname{Input3} 3 \\ & 3=\operatorname{Input} 4 \\ & 4=\text { Input } \\ & 5=\operatorname{Input} 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
Input status	SIG_HPOL	sh	sh	input H sync polarity	Rd	0	0	0	$\begin{aligned} & 0=\text { Negative Sync } \\ & 1=\text { Positive Sync } \end{aligned}$	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	SIG_VPOL	sv	sv	input V sync polarity	Rd	0	1	0	$\begin{aligned} & 0=\text { Negative Sync } \\ & 1=\text { Positive Sync } \end{aligned}$		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SIG_SYNC_TYPE	sK	sK	input sync type	Rd	0	3	0	$0=H \& V$ Sync 1 = TTL Composite Sync 2 = Analog composite Sync 3 = Synchro on green (SOG)	$\begin{aligned} & 0=\text { Input1 } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input3 } \\ & 3=\text { Input4 } \\ & 4=\text { Input5 } \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SIG_FREQ_FIELD	sf	sf	input frame frequency	Rd	0	65535	0	frame frequency in $1 / 100 \mathrm{~Hz}$ unit	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input6 } \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SIG_FREQ_LINE	sl	sl	input line frequency	Rd	0	65535	0	line frequency in $\times 100 \mathrm{~Hz}$ unit	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input6 } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

SIG_DETECTED_FORMAT	sD	sD	detected input format name	Rd	0	41	0			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$

	SIG_HEIGHT	st	st	displayable input line count	Rd	0	65535	0	Unit : pixels		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SIG_HDCP	sn	sn	HDCP input status	Rd	0	1	0	1 = HDCP content	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_DEFAULT	SK	SK	current input default settings (auto clear)	Rd/Wr	0	7	0	$\begin{aligned} & 0=\text { None } \\ & 1=\text { positioning \& Cropping } \\ & 2=\text { Colorimetry } \\ & 4=\text { Hard } \\ & 7=\text { all } \end{aligned}$	$\begin{aligned} & 0=\text { Input1 } \\ & 1=\text { Input2 } \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\operatorname{Input5} \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
Input Settings	SET_HPOS	SH	SH	input signal horizontal position	Rd/Wr	0	2048	1024	$1024=$ neutral	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_VPOS	Sv	SV	input signal vertical position	Rd/Wr	0	2048	1024	$1024=$ neutral	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input5 } \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	SET_HSIZE	Sw	Sw	input signal horizontal size	Rd/Wr	0	4096	2048	$2048=$ neutral	$0=$ Input 1 $1=$ Input 2 $2=$ Input 3 $3=$ nnput 4 $4=$ Input $5=$ $6=$ Input 6 $7=$ Input 7 7	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_VSIZE	Sh	Sh	input signal vertical size	Rd/Wr	0	4096	2048	$2048=$ neutral	$0=$ Input 1 $1=$ Input 2 $2=$ Input 3 $3=\ln p u 44$ $4=$ Input 5 $5=$ Input $6=1$ nnput 7 $7=\ln p u t 8$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_BRIGHTNESS	Sg	Sg	input signal brightness	Rd/Wr	0	255	128	$128=$ neutral	$0=$ Input 1 $1=$ Input 22 $2=$ Input 3 $3=$ Input 4 $4=$ Input 5 $5=$ $6=$ Input 6 $7=$ Input 7 7	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_CONTRAST	Sc	Sc	input signal contrast	Rd/Wr	0	255	128	$128=$ neutral	$0=$ Input 1 $1=$ Input 2 $2=$ Input 3 $3=$ Input 4 $4=$ Input5 $5=$ Input 6 $6=$ Input 7 $7=$ Input 8	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	SET_COLOR	Sr	Sr	input signal color level	Rd/Wr	0	255	128	128 = neutral	$\begin{aligned} & 0=\ln p u t 1 \\ & 1=\ln p u t 2 \\ & 2=\ln p u t 3 \\ & 3=\ln p u t 4 \\ & 4=\ln p u t 5 \\ & 5= \\ & 6=\ln p u t 6 \\ & 6=\ln p u t 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_HUE	Su	Su	input signal hue (NTSC only)	Rd/Wr	0	255	128	$128=$ neutral		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_HTOTAL	ST	ST	input signal total pixel per line	Rd/Wr	200	65535	200	Unit : pixels	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { nnput } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { nnput } 7 \\ & 7=\text { Input } \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_HTOTALMAXI	SX	SX	input signal maximum total pixel per line	Rd	200	65535	200	Unit : pixels	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	SET_PHASE	SS	SS	input signal phase	Rd/Wr	0	63	0	2 pixels range phase		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_AUTOCAD	Sa	Sa	input signal autocentering	Rd/Wr	0	1	0	(auto clear)		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_USER_GAIN_R	sr	sr	ADC R channel adjustment (advanced setting)	Rd/Wr	0	255	128	$128=$ neutral		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_USER_GAIN_G	sg	sg	ADC G channel adjustment (advanced setting)	Rd/Wr	0	255	128	$128=$ neutral	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\ln p u t 3 \\ & 3=\ln p u t 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } \\ & 6=\operatorname{lnput} 7 \\ & 7=\ln p u t 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

$\underset{\text { Pioneer in Analog Leader in Digital }}{\text { AN }}$

	SET_USER_GAIN_B	sb	sb	ADC B channel adjustment (advanced setting)	Rd/Wr	0	255	128	128 = neutral		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_PULLDOWN_2_2	Sn	Sn	2:2 pulldown	Rd/Wr	0	1	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Automatic detection } \end{aligned}$	$\begin{aligned} & 0=\ln p u t 1 \\ & 1=\ln 14+2 \\ & 2=\ln n u t 3 \\ & 3=\ln p u t 4 \\ & 4=\ln p u t 5 \\ & 5=\ln n u t 6 \\ & 6=\ln p u t 7 \\ & 7=\ln p u t 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_PULLDOWN_3_2	Sp	Sp	3:2 pulldown	Rd/Wr	0	1	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Automatic detection } \end{aligned}$	$\begin{aligned} & 0=\ln p u t 1 \\ & 1=\ln n u t 2 \\ & 2=\ln p u t 3 \\ & 3=\ln p u t 4 \\ & 4=\ln n u t 5 \\ & 5=\ln p u t 6 \\ & 6=\ln p u t 7 \\ & 7=\ln p u t 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_ASPECT_RATIO_IN	sA	sA	input picture aspect ratio	$\mathrm{Rd} / \mathrm{Wr}$	0	4	0	$0=$ Native, full screen 1 = LetterBox 1.78, 4/3 with 16/9 content and black bands 2 = LetterBox 2.35, 4/3 with 2,35 content and black bands 3 = PillarBox, $16 / 9$ with $4 / 3$ content and black bands 4 = Anamorphic, $4 / 3$ with 16/9 content without black bands	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input } 3 \\ & 3=\text { nnput } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { nnput } 7 \\ & 7=\text { Input } \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	

	SET_CROP_HEND	LH	LH	input signal H cropping end	Rd/Wr	0	2048	2048	$2048=100 \%=$ no right cropping	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_CROP_VEND	LV	LV	input signal V cropping end	$\mathrm{Rd} / \mathrm{Wr}$	0	2048	2048	$2048=100 \%=$ no top cropping	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input3 } \\ & 3=\operatorname{Input4} 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input6 } \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_FORCE_TO_4_3	Lf	Lf	force $4 / 3$ aspect ratio (SDTV only)	Rd/Wr	0	1	0	1 = force to $4 / 3$ aspect ratio (SDTV only)	$\begin{aligned} & 0=\ln p u t 1 \\ & 1=\ln p u t 2 \\ & 2=\ln p u t 3 \\ & 3=\ln p u t 4 \\ & 4= \\ & 5=\ln p u t 5 \\ & 5=\ln p u t 6 \\ & 6=\ln p u t 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	
	SET_MOTION_DETECT	Sm	Sm	Defines moving pixels detection threshold	Rd/Wr	0	60	0	$60=$ standard setting, $10=$ typical camera setting	$\begin{aligned} & 0=\ln p u t 1 \\ & 1=\ln p u t 2 \\ & 2=\operatorname{lnput} 3 \\ & 3=\ln p u t 4 \\ & 4=\ln p u t 5 \\ & 5=\operatorname{lnp} 54 \\ & 6=\ln p u t 7 \\ & 7 \\ & 7=\ln p u t 8 \end{aligned}$	0 = full deinterlacing $60=$ standard deinterlacing	

	PE_POS_H	pH	pH	layer left H position on output screen	Rd/Wr	0	65535	32768	in pixel with 32768 offset ($32768=$ left side, visible)	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A $2=$ Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_POS_V	pV	pV	layer top V position on output screen	$\mathrm{Rd} / \mathrm{Wr}$	0	65535	32768	in pixel with 32768 offset (32768 = top side, visible)	0 = Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_SIZE_H	pW	pW	layer H size on output screen (without borders)	$\mathrm{Rd} / \mathrm{Wr}$	0	65535	32768	in pixel	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_SIZE_V	pS	pS	layer V size on output screen (without borders)	$\mathrm{Rd} / \mathrm{Wr}$	0	65535	32768	in pixel	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 6 = Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	

	PE_CROP_WIN_POS_H	CH	CH	layer cropping H position	Rd/Wr	0	65535	32768	in \% (65535 = 100\% = full left cropping)	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_CROP_WIN_POS_V	CV	CV	layer cropping V position	Rd/Wr	0	65535	32768	in \% (65535 = 100\% = full top cropping)	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_CROP_WIN_SIZE_H	CW	CW	layer H cropping size	$\mathrm{Rd} / \mathrm{Wr}$	0	58981	0	in \% (65535 = 100\%)	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_CROP_WIN_SIZE_V	CS	CS	layer V cropping size	Rd/Wr	0	58981	0	in \% (65535 = 100\%)	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 5 = Memorized Preset 3 $6=$ Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	

	PE_ALPHA	pA	pA	layer transparency	Rd/Wr	0	255	0	$\begin{aligned} & 0=\text { opaque, } 255=100 \%=\text { full } \\ & \text { transparency } \end{aligned}$	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_BORDER_STYLE	bS	bS	border style	Rd/Wr	0	4	0	$\begin{aligned} & 0=\text { No Border } \\ & 1=\text { Edges } \\ & 2=\text { Smooth } \\ & 3=\text { Shadow } \\ & 4=\text { Smooth shadow } \end{aligned}$	0 = Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_BORDER_COLOR	bC	bC	border color	Rd/Wr	0	544	0	color number	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A 6 = Logo B 7 = Frame Mask	
	PE_BORDER_ALPHA	bA	bA	border transparency	Rd/Wr	0	255	128	255 = full transparency	0 = Current Preset 1 = Next Preset $2=$ Previous Preset $3=$ Memorized Preset 1 $4=$ Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	

	PE_BORDER_SIZE_H	bH	bH	border H size	Rd/Wr	0	127	10	in pixel	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A $2=$ Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_BORDER_SIZE_V	bV	bV	border V size	Rd/Wr	0	127	10	in pixel	0 = Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_BORDER_SHADOW_POS	bP	bP	layer shadow position	Rd/Wr	0	3	0	$\begin{aligned} & 0=S E=\text { Bottom Right } \\ & 1=S W=\text { Bottom Left } \\ & 2=N W=\text { TOP Left } \\ & 3=N E=T O P \text { Right } \end{aligned}$	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_OPENING_TRANSITION	oT	oT	layer opening transition	Rd/Wr	0	2	1	$0=$ Cut Transition 1 = Fade Transition 2 = Slide Transition	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 6 = Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	

	PE_OPENING_TRANSITION_WAY	oW	oW	opening transition direction	Rd/Wr	0	3	0	$0=$ Left to right Transition 1 = Right to left Transition $2=$ Bottom to top Transition 3 = Top to bottom Transition	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_OPENING_DURATION	oD	oD	opening transition time	Rd/Wr	0	255	10	$\begin{aligned} & \text { in } 1 / 10 \text { second (ex : } 105= \\ & 10.5 \mathrm{~s} \text {) } \end{aligned}$	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4 \text { = Layer D } \\ & 5 \text { = Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_CLOSING_TRANSITION	cT	cT	layer closing transition	Rd/Wr	0	2	1	$0=$ Cut Transition 1 = Fade Transition 2 = Slide Transition	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 5 = Memorized Preset 3 $6=$ Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	PE_CLOSING_TRANSITION_WAY	cW	cW	closing transition direction	Rd/Wr	0	3	1	$0=$ Left to right Transition $1=$ Right to left Transition 2 = Bottom to top Transition $3=$ Top to bottom Transition	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 6 = Memorized Preset 4	0 = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	

	PE_CLOSING_DURATION	cD	cD	closing transition time	Rd/Wr	0	255	10	$\begin{aligned} & \text { in } 1 / 10 \text { second (ex : } 105= \\ & 10.5 \text { s) } \end{aligned}$	0 = Current Preset 1 = Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	PE_FREEZE_INPUT	pZ	pZ	input image freeze	Rd/Wr	0	1	0	1 = input freeze	$0=$ Current Preset $1=$ Next Preset $2=$ Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Background } \\ & \text { Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3 \text { = Layer C } \\ & 4 \text { = Layer D } \\ & 5 \text { = Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$	
	P_PLUGNUM	IP	IP	active plug on input	Rd/Wr	0	2	0	$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$	$0=$ Current Preset $1=$ Next Preset $2=$ Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input } 2 \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input } 5 \\ & 5=\text { Input } 6 \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$	
Presets	P_KEYING_ENABLE	KE	KE	keying/titling enable	Rd/Wr	0	1	0	1 = enable keying/tiling	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		

	P_KEYING_LAYER	KL	KL	keying layer	Rd/Wr	1	4	2	$\begin{aligned} & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { L Layer C } \\ & 4=\text { Layer D } \end{aligned}$	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_TYPE	KT	KT	keying type	Rd/Wr	0	3	3	$0=$ Luma titling 1 = Chroma titling 2 = luma keying $3=$ chroma keying	0 = Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_SHADOW	KS	KS	shadow level under titling layer	Rd/Wr	0	255	0	$0=0 \%$ = background attenuated, $255=100 \%$ = black background	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_R_LEVEL	KR	KR	keying red level	Rd/Wr	0	255	0	$0=0 \%, 255=100 \%$	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 6 = Memorized Preset 4		

	P_KEYING_G_LEVEL	KG	KG	keying green level or luma level	Rd/Wr	0	255	255	$0=0 \%, 255=100 \%$	$0=$ Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_B_LEVEL	KB	KB	keying blue level	Rd/Wr	0	255	0	$0=0 \%, 255=100 \%$	0 = Current Preset 1 = Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_TOLER	KH	KH	keying tolerance	Rd/Wr	0	255	16	$0=0 \%, 255=100 \%$	0 = Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	P_KEYING_INV	Ki	Ki	key invert	Rd/Wr	0	1	0	1 = invert key (inside keying)	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset $3=$ Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 6 = Memorized Preset 4		

Layer Controls	COPY_LAYER_PRESET	LP	LP	preset for layer copy	Rd/Wr	0	6	0	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 $4=$ Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4		
	COPY_LAYER_FROM	LF	LF	source for layer copy	Rd/Wr	0	7	0	$\begin{aligned} & 0=\text { Background Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$		
	COPY_LAYER_TO	LT	LT	destination for layer copy	$\mathrm{Rd} / \mathrm{Wr}$	0	7	0	$\begin{aligned} & 0=\text { Background Frame } \\ & 1=\text { Layer A } \\ & 2=\text { Layer B } \\ & 3=\text { Layer C } \\ & 4=\text { Layer D } \\ & 5=\text { Logo A } \\ & 6=\text { Logo B } \\ & 7=\text { Frame Mask } \end{aligned}$		
	COPY_LAYER_CTRL	LC	LC	layer copy control (auto clear)	Rd/Wr	0	1	0	$\begin{aligned} & 0=\text { operation complete } \\ & 1=\text { execute one layer copy } \end{aligned}$		
Settings	R_FLICK	Rf	Rf	antiflicker level	Rd/Wr	0	7	2	0 = no anti-flicker	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \\ & \hline \end{aligned}$	
	R_GAMMA	Rg	Rg	gamma correction level	Rd/Wr	5	40	10	gamma value in $1 / 10$ (ex : 22 for 2.2)	$\begin{aligned} & \hline 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$	

Output	OFORMAT	OF	OF	output format	Rd/Wr	0	38	12		$0=$ Main Output 1 = Preview Output $2=$ Recording Output		
	ORATE	OR	OR	output rate	Rd/Wr	0	10	8	$\begin{aligned} & 0=\text { Custom Field Rate } \\ & 1=23,97 \mathrm{~Hz} \\ & 2=24 \mathrm{~Hz} \\ & 3=25 \mathrm{~Hz} \\ & 4=29,97 \mathrm{~Hz} \\ & 5=30 \mathrm{~Hz} \\ & 6=50 \mathrm{~Hz} \\ & 7=59,94 \mathrm{~Hz} \\ & 8=60 \mathrm{~Hz} \\ & 9=72 \mathrm{~Hz} \\ & 10=75 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		

	OSIGTYPEANALOG	OA	OA	analog output type	$\mathrm{Rd} / \mathrm{Wr}$	0	3	2	$\begin{aligned} & 0=\mathrm{RGBs} \\ & 1=\mathrm{RGsB}(\mathrm{SOG}) \\ & 2=\mathrm{RGB} \mathrm{H} \mathrm{\& V} \\ & 3=Y U V \end{aligned}$	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	OSIGTYPEDIGITAL	OD	OD	digital output type	Rd/Wr	0	2	0	$\begin{array}{\|l\|} \hline 0=\text { RGB 0-255 (Full Scale) } \\ 1=\text { RGB 16-235 (Reduced } \\ \text { Scale) } \\ 2=Y U V \\ \hline \end{array}$	$\begin{aligned} & \hline 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	OPATTERN	OP	OP	output pattern	$\mathrm{Rd} / \mathrm{Wr}$	0	9	0	$\begin{aligned} & 0=\text { No pattern } \\ & 1=\text { Vertical Grey Scale } \\ & 2=\text { Horizontal Grey Scale } \\ & 3=\text { Vertical Color Bar } \\ & 4=\text { Horizontal Color Bar } \\ & 5=\text { Grid } \\ & 6=\text { SMPTE } \\ & 7=\text { Burst } \\ & 8=\text { Centering } \\ & 9=\text { Soft Edge Centering } \end{aligned}$	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	OBLACK_REQ	OB	OB	black output control	Rd/Wr	0	1	0	1 = black output	$\begin{aligned} & \hline 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	OUTIL_H	OH	OH	output horizontal size status	Rd	0	65535	0	in pixel	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \\ & \hline \end{aligned}$		
	OUTIL_V	OV	OV	output vertical size status	Rd	0	65535	0	in pixel	$\begin{aligned} & \hline 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	OFIELDRATE	OT	OT	output frame frequency	Rd	100	65000	6000	frequency in $1 / 100 \mathrm{~Hz}$	$\begin{array}{\|l\|} \hline 0=\text { Main Output } \\ 1=\text { Preview Output } \\ 2=\text { Recording } \\ \text { Output } \\ \hline \end{array}$		
	OISHDCP	On	On	output HDCP status	Rd	0	1	0	1 = output connected to HDCP display	$\begin{aligned} & \hline 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		
	ODETECT_HDCP	OC	OC	output HDCP detection enable	Rd/Wr	0	1	1		$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$		

	BKG_COLOR_G	RG	RG	recording background color (Green)	Rd/Wr	0	1024	0		$\begin{aligned} & 0=\text { one window } \\ & \text { display mode } \\ & 1=\text { multiple } \\ & \text { windows display } \\ & \text { mode } \end{aligned}$		
	BKG_COLOR_B	RB	RB	recording background color (Blue)	Rd/Wr	0	1024	0		$\begin{array}{\|l} \hline 0=\text { one window } \\ \text { display mode } \\ 1=\text { multiple } \\ \text { windows display } \\ \text { mode } \\ \hline \end{array}$		
Output screen	OSCREEN_UTIL_H	sH	sH	output screen horizontal size (total screen in softedge)	Rd	0	65535	0	in pixel			
	OSCREEN_UTIL_V	sV	sV	output screen vertical size (total screen in softedge)	Rd	0	65535	0	in pixel			
	OSCREEN_DEVICE_COUNT	sC	sC	output screen machine count	Rd/Wr	1	16	1				
	OSCREEN_DEVICE_POSITION	sP	sP	output screen machine position	Rd/Wr	1	16	1	1 = left or top			
Softedge	SOFTEDGE_MODE	SM	SM	softedge direction	Rd/Wr	0	1	0	$0 \text { = Horizontal Softedge }$ $1 \text { = Vertical Softedge }$			
	SOFTEDGE_COVERING_SIZE	SZ	SZ	covering size	$\mathrm{Rd} / \mathrm{Wr}$	0	1023	0	in pixel			
	SOFTEDGE_ENABLE_CURVES	SE	SE	blending enable	$\mathrm{Rd} / \mathrm{Wr}$	0	1	0	1 = blending enable			
	SOFTEDGE_POINT	SP	SP	blending curve points	Rd/Wr	0	65535	0	coordinate point in \% + 32768 offset (ex : coordinate $26=32768+$ 26)	0 = Left/Top Border $1=$ Bottom/Right Border	$\begin{aligned} & 0=\text { Point } 0 \\ & 1=\text { Point } 1 \end{aligned}$	$\begin{array}{\|l} \hline 0=X \\ \text { Coord } \\ 1=Y \\ \text { Coord } \\ \hline \end{array}$
	SOFTEDGE_BLACK_SIZE	Sb	Sb	black level correction areas	Rd/Wr	0	127	0	in pixel	$\begin{aligned} & 0=\text { Left/Top Border } \\ & 1=\text { Bottom/Right } \\ & \text { Border } \end{aligned}$		
	SOFTEDGE_BLACK_R_LEVEL	SR	SR	red component level in black area	Rd/Wr	0	63	0	$0=$ Black	$\begin{aligned} & 0=\text { Left/Top Border } \\ & 1=\text { Bottom/Right } \\ & \text { Border } \end{aligned}$		
	SOFTEDGE_BLACK_G_LEVEL	SG	SG	green component level in black area	Rd/Wr	0	63	0	0 = Black	$\begin{aligned} & 0=\text { Left/Top Border } \\ & 1=\text { Bottom/Right } \\ & \text { Border } \end{aligned}$		
	SOFTEDGE_BLACK_B_LEVEL	SB	SB	blue component level in black area	Rd/Wr	0	63	0	0 = Black	$\begin{aligned} & 0=\text { Left/Top Border } \\ & 1=\text { Bottom/Right } \\ & \text { Border } \end{aligned}$		

Logos Frames	PMODE	PM	PM	logo/frame mode	Rd/Wr	0	9	0	0 = Use Logo Frame mode 1 = Logo recording mode 2 = Live logo recording mode 3 = Frame recording mode 4 = Frame mask recording mode 5 = Logo clear mode 6 = Frame clear mode 7 = Frame mask clear mode 8 = Complete frame, logo and maskFrame clear mode 9 = Transfer Mode			
	PEXECUTE	PG	PG	logo/frame control	Rd/Wr	0	1	0	start operation requested by logo/frame mode. (recording or erasure)(auto clear)			
	PABORT	PA	PA	logo/frame recording abort	Rd/Wr	0	1	0	(auto clear)			
	PSTATUS	PE	PE	logo/frame control status	Rd	0	5	0	$0=\text { Free }$ 1 = Logo/Frame Recalling 2 = Logo/Frame storing 3 = Logo/Frame Format and output format not compatible 4 = Logo/Frame clearing 5 = Flash memory error			
	PFRAMES_VALID	PF	PF	frame available status, bit field with bit0=frame1 ... bit7=frame8, bit8=maskFrame	Rd	0	1023	0	$0=$ no logo/frame available			
	PLOGOS_VALID	PZ	PZ	logo available status, bit field with bit0=logo1 ... bit7=logo8	Rd	0	511	0	$0=$ no logo/frame available			
	PCAPTURE_LEFT	PL	PL	logo/frame horizontal position	$\mathrm{Rd} / \mathrm{Wr}$	0	32767	0	in pixel			
	PCAPTURE_TOP	PT	PT	logo/frame vertical position	Rd/Wr	0	32767	0	in pixel			
	PCAPTURE_WIDTH	PW	PW	logo/frame capture horizontal size	Rd/Wr	0	32767	400	in pixel			
	PCAPTURE_HEIGHT	PH	PH	logo/frame capture vertical size	Rd/Wr	0	32767	300	in pixel			
	PCAPTURE_LUMAKEY_TYPE	PY	PY	logo/frame keying mode	Rd/Wr	0	1	0	$\begin{aligned} & 0=\text { Black } \\ & 1=\text { White } \end{aligned}$			
	PCAPTURE_LUMAKEY_LEVEL	PI	PI	logo/frame luma key level	$\mathrm{Rd} / \mathrm{Wr}$	0	255	0	0 = black, 255 = white	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \\ & 2=\text { Recording } \\ & \text { Output } \end{aligned}$	$\begin{aligned} & 0=\text { Black } \\ & 1=\text { White } \end{aligned}$	

	LANRESET	nr	nr	LAN factory parameters reset	Rd/Wr	0	1	0	(auto clear)			
	LANSTORE	ns	ns	LAN parameters update	Rd/Wr	0	1	0	(auto clear)			
	LANIP	nw	nw	LAN devices addresses	Rd/Wr	0	255	192	0 up to 255	$\begin{array}{\|l} \hline 0=\text { Device } \\ \text { side(DVX8044) } \\ 1=\text { Remote } \\ \text { side(RK8044) } \\ 2=\text { Gateway } \end{array}$	$\begin{aligned} & 0=I P \text { address } \\ & 1 \text { st Byte } \\ & 1=I P \text { address } \\ & \text { 2nd Byte } \\ & 2=I P \text { address } \\ & \text { 3rd Byte } \\ & 3=I P \text { address } \\ & \text { 4th Byte } \end{aligned}$	
	LANPORT	np	np	LAN port numbers	Rd/Wr	0	65535	10500	local port : 10000 up to 10999 distant port : 0 up to 65535	$\begin{array}{\|l} \hline 0 \text { = Device } \\ \text { side(DVX8044) } \\ 1=\text { Remote } \\ \text { side(RK8044) } \\ 2=\text { Gateway } \\ \hline \end{array}$		
	LANNETMASK	nk	nk	LAN netmask	Rd/Wr	0	24	8	0 value bit count from right			
	LANPROTOCOL	nt	nt	LAN protocol	Rd/Wr	0	2	1	$\begin{aligned} & 0=\text { UDP } \\ & 1=T C P \\ & 2=A M X \end{aligned}$			
	AUDIO_TYPE	AT	AT	audio mode	Rd/Wr	0	1	1	0 = BreakAway, listened input is independent of displayed inputs 1 = FollowLastLayer, listened input is last selected layer input			
AUDIO	AUDIO_LEVEL	AL	AL	audio input level	Rd/Wr	0	63	63	with balanced signal : $\begin{aligned} & 1=-63 \mathrm{~dB} \\ & 63=0 \mathrm{~dB} \end{aligned}$			
	AUDIO_AUX_LEVEL	AI	AI	audio auxiliary input level	Rd/Wr	0	63	63	with balanced signal $\begin{aligned} & 1=-63 \mathrm{~dB} \\ & 63=0 \mathrm{~dB} \end{aligned}$			

	AUDIO_BALANCE	AB	AB	audio input balance	Rd/Wr	0	200	100	in \%, $0=$ right muted, $100=$ standard, $200=$ left muted	$\begin{aligned} & 0=\text { Input } 1 \\ & 1=\text { Input2 } \\ & 2=\text { Input3 } \\ & 3=\text { Input } 4 \\ & 4=\text { Input5 } \\ & 5=\text { Input6 } \\ & 6=\text { Input } 7 \\ & 7=\text { Input } 8 \end{aligned}$		
	AUDIO_AUX_BALANCE	Ab	Ab	audio auxiliary input balance	Rd/Wr	0	200	100	in \%, $0=$ right muted, $100=$ standard, $200=$ left muted			
	AUDIO_SOURCE	AS	AS	audio input select	Rd/Wr	0	8	0	$0=$ No Input 1 = Input1 / Frame1 / Logo1 / MaskFrame1 2 = Input2 / Frame2 / Logo2 3 = Input3 / Frame3 / Logo3 4 = Input4 / Frame4 / Logo4 5 = Input5 / Frame5 / Logo5 6 = Input6 / Frame6 / Logo6 7 = Input7 / Frame7 / Logo7 8 = Input8 / Frame8 / Logo8	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	AUDIO_AUX_MUTE	Aa	Aa	audio auxiliary input mute	Rd/Wr	0	1	0	1 = enable	$0=$ Current Preset $1=$ Next Preset 2 = Previous Preset 3 = Memorized Preset 1 4 = Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4	$0=$ Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D $5=$ Logo A $6=$ Logo B 7 = Frame Mask	
	AUDIO_MUTE	Au	Au	audio input mute	Rd/Wr	0	1	0	1 = muted	$\begin{aligned} & 0=\text { Main Output } \\ & 1=\text { Preview Output } \end{aligned}$		
	AUDIO_MASTER_VOLUME	AV	AV	audio output master volume	Rd/Wr	0	63	63	with balanced signal : $0=$ min volume, $57=0 \mathrm{~dB}$ attenuation, $63=$ max volume $(+6 \mathrm{~dB})$	0 = Main Output 1 = Preview Output		
	AUDIO_MODE	Am	Am	audio stereo mode	$\mathrm{Rd} / \mathrm{Wr}$	0	1	1	$\begin{aligned} & 0=\text { mono }, \\ & 1=\text { Stereo } \end{aligned}$	$\begin{aligned} & 0=\text { Main Output } \\ & 1 \text { = Preview Output } \end{aligned}$		

